Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Malte Helmert Robert Mattmüller

Albert-Ludwigs-Universität Freiburg, Germany

AAAI 2008

Summary and Conclusion

Motivation

- Goal: Develop efficient optimal planning algorithms
- Subgoal: Find accurate admissible heuristics

How to assess the accuracy of an admissible heuristic?

Most common approach

Run planners on benchmarks and count node expansions. Drawback: Only comparative statements

Alternative approach

Analytical comparison to optimal heuristic on benchmark domains Advantage: Absolute statements, theoretical limitations

Scope of our analysis

Considered heuristics

- h^+ : optimal plan length for delete relaxation
- h^k : cost of most costly size-k goal subset (roughly)
- h^{PDB} : pattern database heuristics
- $h_{\text{add}}^{\text{PDB}}$: additive pattern database heuristics

Reference point: optimal plan length h^*

Considered planning domains

GRIPPER, LOGISTICS, BLOCKSWORLD, MICONIC-STRIPS, MICONIC-SIMPLE-ADL, SCHEDULE, SATELLITE

Analyses 0000000000 Summary and Conclusion

Domains: GRIPPER

Analyses

Summary and Conclusion

Domains: BLOCKSWORLD

Analyses 20000000000 Summary and Conclusion

Domains: MICONIC-STRIPS, MICONIC-SIMPLE-ADL

initial state

Asymptotic accuracy

Definition

Let \mathcal{D} be a planning domain (family of planning tasks). A heuristic h has asymptotic accuracy $\alpha \in [0, 1]$ on \mathcal{D} iff

• $h(s) \ge \alpha h^*(s) + o(h^*(s))$ for all initial states s of tasks in \mathcal{D} , and

•
$$h(s) \leq \alpha h^*(s) + o(h^*(s))$$

for all initial states s of an infinite subfamily of \mathcal{D}
with unbounded $h^*(s)$

If solution lengths in \mathcal{D} are unbounded, there is exactly one such α for a given heuristic and domain. We write it as $\alpha(h, \mathcal{D})$.

Outline

Delete relaxation

Considered heuristics

- h^+ : optimal plan length for delete relaxation
- h^k : cost of most costly size-k goal subset (roughly)
- h^{PDB} : pattern database heuristics
- $h_{\text{add}}^{\text{PDB}}$: additive pattern database heuristics

Summary and Conclusion

Delete relaxation: BLOCKSWORLD

Example (BLOCKSWORLD)

Lower bound:

m = number of blocks touched in optimal plan $h^*(s) \le 4m, \ h^+(s) \ge m \Rightarrow \alpha(h^+, \text{BLOCKSWORLD}) \ge 1/4$ Upper bound:

 $h^*(s_n) = 4n - 2, \ h^+(s_n) = n + 1 \Rightarrow \alpha(h^+, \text{Blocksworld}) \le 1/4$ $\rightsquigarrow \alpha(h^+, \text{Blocksworld}) = 1/4$

Summary and Conclusion

Delete relaxation: BLOCKSWORLD

Example (BLOCKSWORLD)

Lower bound:

m = number of blocks touched in optimal plan $h^*(s) \le 4m, \ h^+(s) \ge m \Rightarrow \alpha(h^+, \text{Blocksworld}) \ge 1/4$ Upper bound:

 $h^*(s_n) = 4n - 2, \ h^+(s_n) = n + 1 \Rightarrow \alpha(h^+, \text{Blocksworld}) \le 1/4$ $\rightsquigarrow \alpha(h^+, \text{Blocksworld}) = 1/4$

Summary and Conclusion

Delete relaxation: BLOCKSWORLD

Example (BLOCKSWORLD)

Lower bound:

m = number of blocks touched in optimal plan $h^*(s) \le 4m, \ h^+(s) \ge m \Rightarrow \alpha(h^+, \text{Blocksworld}) \ge 1/4$ Upper bound:

 $h^*(s_n) = 4n - 2, \ h^+(s_n) = n + 1 \Rightarrow \alpha(h^+, \text{Blocksworld}) \le 1/4$ $\rightsquigarrow \alpha(h^+, \text{Blocksworld}) = 1/4$

Summary and Conclusion

The h^k heuristic family

Considered heuristics

- h^+ : optimal plan length for delete relaxation
- h^k : cost of most costly size-k goal subset (roughly)
- h^{PDB} : pattern database heuristics
- $h_{\text{add}}^{\text{PDB}}$: additive pattern database heuristics

Analyses 000000000

Summary and Conclusion

The h^k heuristic family

$\alpha(h^k,\mathcal{D})=0$ for all considered domains

Proof idea.

There are families of states $(s_n)_{n\in\mathbb{N}}$ with

•
$$h^*(s_n) \in \Omega(n)$$
 and

•
$$h^k(s_n) \in O(k)$$
.

Analyses 0000000000

Summary and Conclusion

The h^k heuristic family

Example (BLOCKSWORLD) B_1 B_2 B_3 . . . B_1 B_3 B_n B_n B_2 . . . $h^*(s_n) = 2n - 2, \ h^k(s_n) \le 2k$ $\rightsquigarrow \alpha(h^k, \text{BLOCKSWORLD}) = 0$

Summary and Conclusion

Non-additive pattern database heuristics

Considered heuristics

- h⁺: optimal plan length for delete relaxation
- h^k : cost of most costly size-k goal subset (roughly)
- h^{PDB} : pattern database heuristics
- $h_{\text{add}}^{\text{PDB}}$: additive pattern database heuristics

Let n be the problem size.

- Bounded memory: database size limit $O(n^k)$ entries
- Consequently: pattern size limit $O(\log n)$ variables

Summary and Conclusion

Non-additive pattern database heuristics

 $\alpha(h^{\mathsf{PDB}},\mathcal{D})=0$ for all considered domains

Proof idea.

At most $O(\log n)$ variables in pattern \Rightarrow at most $O(\log n)$ goals represented in abstraction There are families of states $(s_n)_{n \in \mathbb{N}}$ with

- $h^*(s_n) \in \Omega(n)$ and
- $h^{\mathsf{PDB}}(s_n) \in O(\log n).$

Summary and Conclusion

Additive pattern database heuristics

Considered heuristics

- h^+ : optimal plan length for delete relaxation
- h^k : cost of most costly size-k goal subset (roughly)
- h^{PDB} : pattern database heuristics
- $h_{\rm add}^{\rm PDB}$: additive pattern database heuristics

Let n be the problem size.

- Bounded memory: overall database size limit $O(n^k)$ entries
- Consequently: size limit $O(\log n)$ variables for each pattern

Summary and Conclusion

Additive pattern database heuristics: MICONIC-STRIPS

Example (MICONIC-STRIPS)

Lower bound: m passengers, singleton pattern for each passenger: $h^*(s) \le 4m, h_{add}^{PDB}(s_n) = 2m$ $\Rightarrow \alpha(h_{add}^{PDB}, MICONIC-STRIPS) \ge 1/2$ Upper bound: Optimal additive PDB: • {elev, pass_1, ..., pass_K} ($K \in O(\log n)$) • {pass_{K+1}}, ..., {pass_n}

 $\alpha (\rightsquigarrow h_{\mathsf{add}}^{\mathsf{PDB}}, \mathsf{MICONIC-STRIPS}) = 1/2$

Summary and Conclusion

Additive pattern database heuristics: MICONIC-STRIPS

Example (MICONIC-STRIPS)

Lower bound:

m passengers, singleton pattern for each passenger: $h^*(s) \leq 4m, \ h_{add}^{PDB}(s_n) = 2m$

$$\Rightarrow \alpha(h_{\mathsf{add}}^{\mathsf{PDB}}, \mathsf{MICONIC-STRIPS}) \ge 1/2$$

Upper bound:

Optimal additive PDB:

• $\{\texttt{elev}, \texttt{pass}_1, \dots, \texttt{pass}_K\} \ (K \in O(\log n))$

•
$$\{\mathtt{pass}_{K+1}\}, \ldots, \{\mathtt{pass}_n\}$$

 $\alpha (\rightsquigarrow h_{\mathsf{add}}^{\mathsf{PDB}}, \mathsf{MICONIC-STRIPS}) = 1/2$

Summary and Conclusion

Additive pattern database heuristics: MICONIC-STRIPS

Example (MICONIC-STRIPS)

Lower bound:

m passengers, singleton pattern for each passenger: $h^*(s) \leq 4m, \ h_{add}^{PDB}(s_n) = 2m$

$$\Rightarrow \alpha(h_{\mathsf{add}}^{\mathsf{PDB}}, \mathsf{MICONIC-STRIPS}) \ge 1/2$$

Upper bound:

Optimal additive PDB:

• $\{\texttt{elev}, \texttt{pass}_1, \dots, \texttt{pass}_K\} \ (K \in O(\log n))$

•
$$\{\mathtt{pass}_{K+1}\}, \ldots, \{\mathtt{pass}_n\}$$

 $\alpha(\rightsquigarrow h_{\mathsf{add}}^{\mathsf{PDB}}, \text{Miconic-Strips}) = 1/2$

Summary and Conclusion

Outline

Analyses 0000000000 Summary and Conclusion $0 \bullet 00$

Summary of results

Asymptotic accuracy

Domain	h^+	h^k	h^{PDB}	h_{add}^{PDB}
Gripper	2/3	0	0	2/3
LOGISTICS	3/4	0	0	1/2
Blocksworld	1/4	0	0	0
MICONIC-STRIPS	6/7	0	0	1/2
MICONIC-SIMPLE-ADL	3/4	0	0	0
Schedule	1/4	0	0	1/2
SATELLITE	1/2	0	0	1/6

Summary and conclusion

Method:

• Analytical comparison of domain-specific accuracy of the heuristics h^+ , h^k , h^{PDB} , $h^{\text{PDB}}_{\text{add}}$

Results:

- h⁺: usually most accurate (but NP-hard to compute in general)
- h^k , h^{PDB} : arbitrarily inaccurate
- h^{PDB}_{add}: good accuracy/effort trade-off (but how to determine a good pattern collection?)

Future work:

- additive h^k
- explicit-state abstraction heuristics

Analyses 0000000000 Summary and Conclusion 000

Thank you for your attention!