Solving Non-deterministic Planning Problems with Pattern Database Heuristics

Pascal Bercher

Institute of Artificial Intelligence University of Ulm, Germany

Robert Mattmüller

Department of Computer Science University of Freiburg, Germany

KI 2009, Paderborn

A non-deterministic planning problem.

(Informally: Initial state, actions, goal states. Given:

Nondeterminism: actions may have several outcomes.)

A solution to that problem. **Desired:**

(Informally: How to reach a goal state, using the actions?)

Given:

Non-deterministic planning problem $\mathcal{P} = (Var, A, s_0, G)$ with:

- Var, finite set of state variables. $S = 2^{Var}$ is the state space.
- A, finite set of actions $a = \langle pre(a), eff(a) \rangle$ and:
 - pre(a) ⊆ Var and
 - $eff(a) = \{ \langle add_i, del_i \rangle \mid add_i, del_i \subseteq Var \text{ and } i \in \{1, ..., n\} \}.$
 - Its application (if $pre(a) \subseteq s$) leads to: $app(s, a) = \{ (s \setminus del) \cup add \mid \langle add, del \rangle \in eff(a) \}$
- $s_0 \in S$, the *initial state*.
- G ⊆ Var, the goal description. A state $s \in S$ is a goal state iff $s \supseteq G$.

Benchmarks

00000

Let $s = \{x, y, z\} \in S$ be a state and $a \in A$ be an action with:

$$a = \langle pre(a), eff(a) \rangle$$
 and $pre(a) = \{x, y\} \subseteq s,$ $eff(a) = \{ \langle \{z\}, \{x, y\} \rangle, \langle \emptyset, \{t, z\} \rangle \}.$

Desired:

Formalization & Search

Desired:

Formalization & Search

Desired:

Formalization & Search

Desired:

Search Algorithm, modification of AO*

0000

Use abstraction to simplify the problem:

Map the search space S to abstract search spaces S^i with $|S^i| \ll |S|$.

Compute h(s), $s \in S$, on basis of all $h^i(s^i)$. Calculation of the h^i is done *before* the search.

Idea: Disregard some (or rather *most of the*) state variables.

The abstraction $\mathcal{P}^i = (Var^i, A^i, s_0^i, G^i)$ is the planning problem \mathcal{P} , restricted to the pattern $P_i \subseteq Var$:

- $Var^i := Var \cap P_i = P_i$.
- For $var \subseteq Var$ let $var^i := var \cap P_i$. Then: $a^i := \langle pre(a)^i, \{ \langle add^i, del^i \rangle \mid \langle add, del \rangle \in eff(a) \} \rangle$ for $a \in A$. Now. $A^i := \{ a^i \mid a \in A \}.$
- $s_0^i := s_0 \cap P_i$
- $G^i := G \cap P_i$.

Recall:

- A pattern is a set of state variables P_i ⊆ Var. Then, a pattern collection P is a set of patterns.
- Compute $h(s), s \in S$, on basis of all $h^i(s^i), P_i \in P$, P finite pattern collection, i.e. set of patterns.

How to calculate those $h^i(s^i), s^i \in S^i$?

 $h^i(s^i)$ is the true cost value cost* of the planning problem \mathcal{P}^i . Calcuation is done by a complete exhaustive search. (Thus, S^i and therefore P_i have to be small!)

(*True* means: prefer shallow solution graphs.)

Additivity (Theorem)

Formalization & Search

How to calculate h(s), $s \in S$?

By using additivity!

A pattern collection P is called *additive*, if for all states $s \in S$:

 $\sum_{P_i \in P} h^i(s^i) \le cost^*(s), \text{ i.e. if this sum is still admissible.}$

Known from classical planning:

Theorem (textual description)

If there is no action $a \in A$ that affects variables in more than one pattern from P, then P is additive.

How to calculate $h(s), s \in S$?

By using additivity!

A pattern collection P is called *additive*, if for all states $s \in S$:

 $\sum h^i(s^i) \leq cost^*(s)$, i.e. if this sum is still admissible.

Known from classical planning:

Theorem (mathematical description)

If for all $a \in A$ and for all patterns $P_i \in P$ holds:

If
$$P_i \cap \text{effvar}(a) \neq \emptyset$$
, then $P_j \cap \text{effvar}(a) = \emptyset$ for all $P_j \in P$ with $P_j \neq P_i$, where $\text{effvar}(a) = \bigcup_{\langle add, del \rangle \in \text{eff}(a)} add \cup del$.

Then P is additive.

Additivity (Example)

$$\mathcal{P} = (\{a,b,c,d,e\},A,\{a\},\{b,c,d,e\}) \text{ with } A = \{a_1,\ldots,a_9\} \text{ and} :$$

$$a_1 = \langle \{a\}, \{\langle \{b\},\{a\}\rangle, \langle \{c\},\{a\}\rangle \} \rangle \qquad a_6 = \langle \{b,e\}, \{\langle \{c\},\emptyset\rangle \} \rangle$$

$$a_2 = \langle \{b\}, \{\langle \{e\},\emptyset\rangle, \langle \{d\},\emptyset\rangle \} \rangle \qquad a_7 = \langle \{c,e\}, \{\langle \{b\},\emptyset\rangle \} \rangle$$

$$a_3 = \langle \{c\}, \{\langle \{e\},\emptyset\rangle, \langle \{d\},\emptyset\rangle \} \rangle \qquad a_8 = \langle \{b,c,d\}, \{\langle \{e\},\emptyset\rangle \} \rangle$$

$$a_4 = \langle \{b,d\}, \{\langle \{c\},\emptyset\rangle \} \rangle \qquad a_9 = \langle \{b,c,e\}, \{\langle \{d\},\emptyset\rangle \} \rangle$$

$$a_5 = \langle \{c,d\}, \{\langle \{b\},\emptyset\rangle \} \rangle$$

Additivity (Example)

$$\mathcal{P} = (\{a,b,c,d,e\},A,\{a\},\{b,c,d,e\}) \text{ with } A = \{a_1,\ldots,a_9\} \text{ and:}$$

$$a_1 = \langle \{a\}, \{\langle \{b\},\{a\}\rangle, \langle \{c\},\{a\}\rangle\} \rangle \qquad a_6 = \langle \{b,e\}, \{\langle \{c\},\emptyset\rangle\} \rangle$$

$$a_2 = \langle \{b\}, \{\langle \{e\},\emptyset\rangle, \langle \{d\},\emptyset\rangle\} \rangle \qquad a_7 = \langle \{c,e\}, \{\langle \{b\},\emptyset\rangle\} \rangle$$

$$a_3 = \langle \{c\}, \{\langle \{e\},\emptyset\rangle, \langle \{d\},\emptyset\rangle\} \rangle \qquad a_8 = \langle \{b,c,d\}, \{\langle \{e\},\emptyset\rangle\} \rangle$$

$$a_4 = \langle \{b,d\}, \{\langle \{c\},\emptyset\rangle\} \rangle \qquad a_9 = \langle \{b,c,e\}, \{\langle \{d\},\emptyset\rangle\} \rangle$$

$$a_5 = \langle \{c,d\}, \{\langle \{b\},\emptyset\rangle\} \rangle$$

Now, consider the pattern collection $P = \{\{a, b, c\}, \{d, e\}\}$.

Benchmarks

$$\mathcal{P} = (\{a, b, c, d, e\}, A, \{a\}, \{b, c, d, e\}) \text{ with } A = \{a_1, \dots, a_9\} \text{ and} :$$

$$a_1 = \langle \{a\}, \{\langle \{b\}, \{a\} \rangle, \langle \{c\}, \{a\} \rangle \} \rangle \qquad a_6 = \langle \{b, e\}, \{\langle \{c\}, \emptyset \rangle \} \rangle$$

$$a_2 = \langle \{b\}, \{\langle \{e\}, \emptyset \rangle, \langle \{d\}, \emptyset \rangle \} \rangle \qquad a_7 = \langle \{c, e\}, \{\langle \{b\}, \emptyset \rangle \} \rangle$$

$$a_3 = \langle \{c\}, \{\langle \{e\}, \emptyset \rangle, \langle \{d\}, \emptyset \rangle \} \rangle \qquad a_8 = \langle \{b, c, d\}, \{\langle \{e\}, \emptyset \rangle \} \rangle$$

$$a_4 = \langle \{b, d\}, \{\langle \{c\}, \emptyset \rangle \} \rangle \qquad a_9 = \langle \{b, c, e\}, \{\langle \{d\}, \emptyset \rangle \} \rangle$$

$$a_5 = \langle \{c, d\}, \{\langle \{b\}, \emptyset \rangle \} \rangle$$

Now, consider the pattern collection $P = \{\{a, b, c\}, \{d, e\}\}$.

Additivity (Example)

$$\mathcal{P} = (\{a, b, c, d, e\}, A, \{a\}, \{b, c, d, e\}) \text{ with } A = \{a_1, \dots, a_9\} \text{ and} :$$

$$a_1 = \langle \{a\}, \{\langle \{b\}, \{a\} \rangle, \langle \{c\}, \{a\} \rangle \} \rangle \qquad a_6 = \langle \{b, e\}, \{\langle \{c\}, \emptyset \rangle \} \rangle$$

$$a_2 = \langle \{b\}, \{\langle \{e\}, \emptyset \rangle, \langle \{d\}, \emptyset \rangle \} \rangle \qquad a_7 = \langle \{c, e\}, \{\langle \{b\}, \emptyset \rangle \} \rangle$$

$$a_3 = \langle \{c\}, \{\langle \{e\}, \emptyset \rangle, \langle \{d\}, \emptyset \rangle \} \rangle \qquad a_8 = \langle \{b, c, d\}, \{\langle \{e\}, \emptyset \rangle \} \rangle$$

$$a_4 = \langle \{b, d\}, \{\langle \{e\}, \emptyset \rangle \} \rangle \qquad a_9 = \langle \{b, c, e\}, \{\langle \{d\}, \emptyset \rangle \} \rangle$$

$$a_5 = \langle \{c, d\}, \{\langle \{b\}, \emptyset \rangle \} \rangle$$

Now, consider the pattern collection $P = \{\{a, b, c\}, \{d, e\}\}.$ Only the effect variables matter!

Benchmarks

Additivity (Example, cont'd)

Additivity (Example, cont'd)

Additivity (Example, cont'd)

Example:

$$h(\{a\}) = h^1(\{a\}^1) + h^2(\{a\}^2) = h^1(\{a\}) + h^2(\emptyset) = 2 + 2 = 4 = cost^*(\{a\}).$$

Heuristic Calculation (cont'd)

Let \mathcal{M} be a set of additive pattern collections.

$$h^{\mathcal{M}}(s) := \max_{P \in \mathcal{M}} \sum_{P_i \in P} h^i(s^i).$$

 $h^{\mathcal{M}}$ (and in particular, every single h^{i}) is admissible.

How to find M?

Current research. (Here: still domain-dependent by hand.)

Compared Systems

Encoded two domains and compared:

- Our planner with the heuristic of FF.
- Our planner with the presented pattern database heuristics.
- GAMER.

Important differences between GAMER and our system:

- Optimal solutions vs. suboptimal solutions.
- Regression vs. progression.

- Pattern database heuristic quality is problem dependent:
 - Pattern database heuristics about 25% Domain 1: more node expansions than FF heuristic.
 - Pattern database heuristics calculate true (perfect) Domain 2:

Benchmarks

- cost value (as opposed to the FF heuristic).
- Calculation time of pattern database heuristic is much smaller than the FF heuristic's. Thus, more problems could be solved.
- Progression with heuristic search seems promising approach. (Note: No comparison to sub-optimal planner, yet.)

- Presented fomalization for domain-independent pattern database heuristics in non-deterministic planning.
- Generalization of additivity criterion.
- Benchmarks look promising.

- Automatic pattern selection.
- Strong plans → strong cyclic plans.
 - Search algorithm, LAO*.
 - Pattern database heuristics: Admissibility/Additivity?
- Multi-valued state variables.

Thank you!