A Planning-Graph Heuristic for Forward-Chaining Adversarial Planning Pascal Bercher and Robert Mattmüller

Heuristic (ctd.)

Introduction

Given

- Fully observable discrete planning problem
- Two agents, protagonist and antagonist
- Reachability goal for protagonist

Desired

Winning strategy for the protagonist (= strong plan, not necessarily conformant)

Technically

STRIPS-style state and action encoding Players taking turns

Example: Airplane Domain

First Step

Reduction to evaluation of AND/OR graph over physical states.

Algorithmic Alternatives

- Symbolic regression search (cf. MBP [CPRT03])
- Heuristically guided explicit-state progression search [BG01]

Approach used here

Variant of AO* algorithm [Nil80].

How to initialize leaf node cost estimates? Variant of FF heuristic [HN01].

Construction of Relaxed Planning Graph

 F_0^a A_0^a A_1^p F_1^a F_1^p A_1^a

 A_1^{ν}

Applicable Relaxed Operators

Restructuring the Relaxed Plan

 A_1^a

 F_2^p

Selected rules for protagonist: $\{r_{12}, r_{13}, r_{14}, r_{15}, r_{16}, r_{78}\}$ Selected rule(s) for antagonist: $\{r_{67}\}$

 $\{r_{14}, r_{15}, r_{16}, r_{78}\}$

Pessimistic Restructuring

 $\{r_{67}\}$

 $\{r_{12}, r_{13}\}$

Possible plan:

▶ Heuristic: 11.

Rules, that only belong to the protagonist:

Rules, that only belong to the antagonist:

Antagonist plays as few rules as possible.

 $\langle r_{16}, r_{67}, r_{78}, nop, r_{12}, nop, r_{13}, nop, r_{14}, nop, r_{15} \rangle$

Rules, that belong to both players:

(4 rules)

(1 rule)

(2 rules)

Problem

AND/OR Graph and Solution

- Logistics-like problem: transport a package from London to Paris by plane.
- Protagonist and antagonist have different capabilities:
- ► The protagonist can:
- load (package into plane)
- fly (from city to city if tank is full, emptying it)
- unload (package from plane)
- no-op (do nothing)
- ► The antagonist can:
 - unload (package from plane)
 - re-fuel (if tank is empty)
- no-op (do nothing; fairness condition: not only no-ops) Antagonist wants to sabotage task, e.g.,
- by unloading packages at the wrong places or
- ▶ by refusing to re-fuel when necessary.

Optimistic Restructuring

Extraction of Relaxed Plan

- Antagonist helps as much as he can.
- ► Possible plan: $\langle r_{16}, r_{67}, r_{78}, r_{12}, r_{14}, r_{13}, r_{15} \rangle$
- ▶ Heuristic: 7.

Experiments and Results

Problems: Airplane Domain

- Instances of the airplane domain with different delivery graphs.
- Between three and four cities, between one and ten packages.
- Example: four cities, seven packages (see Fig. to the right).

Results

	BFS		$AO^* + h_{FF}$		$AO^* + h_{opt. adv. FF}$		$AO^* + h_{\text{pes. adv. FF}}$		MBP		
ℓ/p	time	nodes	time	nodes	time	nodes	time	nodes	pre	search	BDD
2/1	0.014	44	0.046	37	0.023	37	0.022	37	0.064	0.004	14822
2/2	0.048	152	0.064	96	0.088	96	0.077	84	0.384	0.084	290495
3/3	0.354	2106	0.311	1131	0.571	1106	0.226	285	4.128	3.668	166012
3/4	0.870	8211	0.696	2766	0.781	2499	0.538	1053	39.890	82.073	654147
3/5	5.556	43785	2.599	12676	3.019	11644	0.672	1836	_	_	_
3/6	87.691	237264	12.421	61154	11.896	54469	2.526	10333	_	_	_
1/6			202 679	100760	27 762	120262	2 0 7 2	1/115			

AO* Search

Algorithm [Nil80]

- ► Start with initial state.
- While not finished do:
- Extract most promising subgraph by tracing marked connectors from initial state.
- Choose unexpanded leaf node in subgraph and expand it.
- Initialize cost estimates of new nodes.
- Propagate cost estimates and winner information upward and update marked connectors.

Details

- Graph search with duplicate elimination
- Approximative updates of cost estimates

Example: (2) Most Promising Subgraph

Example: (3) After Expansion and Update

9

Example: (1) Before Expansion

Heuristic

Motivation

- ▶ Why: We need to initialize the cost estimates at new leaf nodes in an informed way.
- Constraint: Heuristic should be domain-independent.
- ► How: Adapt heuristics from classical planning to the adversarial setting. Here: FF heuristic.

FF Heuristic [HN01]

- Generate relaxed problem (no delete lists).
- Build relaxed planning graph.
- Extract (non-optimal) relaxed plan and return its length.

Adaption

- Distinct proposition and action layers for protagonist and antagonist.
- Distinguish between relaxed actions

Example

- Variables: v_1, \ldots, v_8
- Rules in relaxed problem:
- $\{r_{12}, r_{13}, r_{14}, r_{15}, r_{16}, r_{67}, r_{78}\}$ where $r_{ij} = \langle v_i \rightarrow v_j \rangle$
- Rules controlled by protagonist: $\{r_{12}, r_{13}, r_{14}, r_{15}, r_{16}, r_{78}\}$
- Rules controlled by antagonist:
 - $\{r_{12}, r_{13}, r_{67}\}$
- Current state: $\{v_1\}$

4/7	_	—	756.138	1006666	131.505	341093	1.375	4262	_	_	_
4/8	_	_	_	_	_	_	29.129	100263	_	_	_
4/9	_	—	_	_	_	_	129.305	361899	_	_	_
4/10	_	—	_	_	_	—	—	—	_	_	_

2 : #locations, p : #packages, BDD: #BDD nodes, red: worst, blue: best

Conclusion

- Domain-independent heuristics promising approach to conditional/adversarial planning.
- Explicit-state progression competitive with symbolic regression.
- Potential application in General Game Playing [GLP05].

Future Work

- Assessment of other domain-independent heuristics in conditional setting.
- More Benchmarks: Conditional planning problems from IPC non-deterministic track.

References

- B. Bonet and H. Geffner. Planning as Heuristic Search. Artif. Intell., 129(1-2):5–33, 2001.
- A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic Planning via Symbolic Model Checking. Artif. Intell., 147(1–2):35–84, 2003.
- M. R. Genesereth, N. Love, and B. Pell. General Game Playing: Overview of the AAAI Competition. AI Magazine, 26(2):62–72, 2005.
- J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic Search. JAIR, 14:253–302, 2001.
- N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1980.

Research Group on the Foundations of Artificial Intelligence, Department of Computer Science, University of Freiburg, Germany

