
A Planning-Graph Heuristic for
Forward-Chaining Adversarial Planning Pascal Bercher and

Robert Mattmüller

Introduction

Given
▶ Fully observable discrete planning problem
▶ Two agents, protagonist and antagonist
▶ Reachability goal for protagonist

Desired
▶ Winning strategy for the protagonist

(= strong plan, not necessarily conformant)

Technically
▶ STRIPS-style state and action encoding
▶ Players taking turns

First Step
Reduction to evaluation of AND/OR graph
over physical states.

Algorithmic Alternatives
▶ Symbolic regression search

(cf. MBP [CPRT03])
▶ Heuristically guided explicit-state

progression search [BG01]

Approach used here
Variant of AO* algorithm [Nil80].

How to initialize leaf node cost estimates?
Variant of FF heuristic [HN01].

Example: Airplane Domain

Problem
▶ Logistics-like problem: transport a package

from London to Paris by plane.
▶ Protagonist and antagonist have different

capabilities:
▶ The protagonist can:

▶ load (package into plane)
▶ fly (from city to city if tank is full, emptying it)
▶ unload (package from plane)
▶ no-op (do nothing)

▶ The antagonist can:
▶ unload (package from plane)
▶ re-fuel (if tank is empty)
▶ no-op (do nothing; fairness condition: not only no-ops)

▶ Antagonist wants to sabotage task, e.g.,
▶ by unloading packages at the wrong places or
▶ by refusing to re-fuel when necessary.

AND/OR Graph and Solution
inAL, atCL,
¬full, ¬nop

inAL, inCA,
¬full, ¬nop

inAL, inCA,
¬full, nop

inAL, inCA,
¬full, nop

inAL, inCA,
full, nop

inAL, inCA,
full, ¬nop

inAP, inCA,
¬full, ¬nop

inAP, inCA,
¬full, nop

inAP, atCP,
¬full, ¬nop

inAP, inCA,
full, ¬nop

inAP, atCP,
¬full, nop

inAP, atCP,
full, ¬nop

...

. . .

...

. . .

...

...

load

no-op

re-fuel

no-op

re-fuel
fly

fly

no-op

unload
re-fuel

unload

unload

no-op

no-op

no-op

no-op

no-op

fly

AO* Search

Algorithm [Nil80]
▶ Start with initial state.
▶ While not finished do:

▶ Extract most promising subgraph by tracing
marked connectors from initial state.

▶ Choose unexpanded leaf node in subgraph and
expand it.

▶ Initialize cost estimates of new nodes.
▶ Propagate cost estimates and winner information

upward and update marked connectors.

Details
▶ Graph search with duplicate elimination
▶ Approximative updates of cost estimates

Example: (1) Before Expansion

4

3 8

3
3 8

10 2

10 2

Example: (2) Most Promising Subgraph

4

3 8

3
3 8

10 2

10 2

Example: (3) After Expansion and Update

9

11 8

11
3 8

10 18

10 18

17

17 8

Heuristic

Motivation
▶ Why: We need to initialize the cost estimates at new leaf nodes in an informed way.
▶ Constraint: Heuristic should be domain-independent.
▶ How: Adapt heuristics from classical planning to the adversarial setting. Here: FF heuristic.

FF Heuristic [HN01]
▶ Generate relaxed problem (no delete lists).
▶ Build relaxed planning graph.
▶ Extract (non-optimal) relaxed plan and

return its length.

Adaption
▶ Distinct proposition and action layers for

protagonist and antagonist.
▶ Distinguish between relaxed actions

controlled by protagonist and antagonist.

Example
▶ Variables: v1, . . . , v8
▶ Rules in relaxed problem:

{r12, r13, r14, r15, r16, r67, r78}
where rij = ⟨vi → vj⟩

▶ Rules controlled by protagonist:
{r12, r13, r14, r15, r16, r78}

▶ Rules controlled by antagonist:
{r12, r13, r67}

▶ Current state: {v1}
▶ Goal: {v1, . . . , v8}

Heuristic (ctd.)

Construction of Relaxed Planning Graph
Fp

0 Ap
0 Fa

0 Aa
0 Fp

1 Ap
1 Fa

1 Aa
1 Fp

2

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

r12

r13

r14

r15

r16

r78

r12

r13

r67

r12

r13

r14

r15

r16

r78

r12

r13

r67

Applicable Relaxed Operators
Fp

0 Ap
0 Fa

0 Aa
0 Fp

1 Ap
1 Fa

1 Aa
1 Fp

2

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

r12

r13

r14

r15

r16

r78

r12

r13

r67

r12

r13

r14

r15

r16

r78

r12

r13

r67

Extraction of Relaxed Plan
Fp

0 Ap
0 Fa

0 Aa
0 Fp

1 Ap
1 Fa

1 Aa
1 Fp

2

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

r12

r13

r14

r15

r16

r78

r12

r13

r67

r12

r13

r14

r15

r16

r78

r12

r13

r67

Restructuring the Relaxed Plan
▶ Selected rules for protagonist:

{r12, r13, r14, r15, r16, r78}
▶ Selected rule(s) for antagonist:

{r67}
▶ Rules, that only belong to the protagonist:

{r14, r15, r16, r78} (4 rules)
▶ Rules, that only belong to the antagonist:

{r67} (1 rule)
▶ Rules, that belong to both players:

{r12, r13} (2 rules)

Optimistic Restructuring
▶ Antagonist helps as much as he can.
▶ Possible plan: ⟨r16, r67, r78, r12, r14, r13, r15⟩
▶ Heuristic: 7.

Pessimistic Restructuring
▶ Antagonist plays as few rules as possible.
▶ Possible plan:
⟨r16, r67, r78, nop, r12, nop, r13, nop, r14, nop, r15⟩

▶ Heuristic: 11.

Experiments and Results

Problems: Airplane Domain

▶ Instances of the airplane domain with different delivery graphs.
▶ Between three and four cities, between one and ten packages.
▶ Example: four cities, seven packages (see Fig. to the right).

c1 c2

c3 c4

Results
BFS AO* + hFF AO* + hopt. adv. FF AO* + hpes. adv. FF MBP

ℓ/p time nodes time nodes time nodes time nodes pre search BDD
2/1 0.014 44 0.046 37 0.023 37 0.022 37 0.064 0.004 14822
2/2 0.048 152 0.064 96 0.088 96 0.077 84 0.384 0.084 290495
3/3 0.354 2106 0.311 1131 0.571 1106 0.226 285 4.128 3.668 166012
3/4 0.870 8211 0.696 2766 0.781 2499 0.538 1053 39.890 82.073 654147
3/5 5.556 43785 2.599 12676 3.019 11644 0.672 1836 – – –
3/6 87.691 237264 12.421 61154 11.896 54469 2.526 10333 – – –
4/6 – – 203.678 408768 37.762 129362 3.973 14115 – – –
4/7 – – 756.138 1006666 131.505 341093 1.375 4262 – – –
4/8 – – – – – – 29.129 100263 – – –
4/9 – – – – – – 129.305 361899 – – –

4/10 – – – – – – – – – – –

ℓ : #locations, p : #packages, BDD: #BDD nodes, red: worst, blue: best

Conclusion

▶ Domain-independent heuristics promising approach to conditional/adversarial planning.
▶ Explicit-state progression competitive with symbolic regression.
▶ Potential application in General Game Playing [GLP05].

Future Work

▶ Assessment of other domain-independent heuristics in conditional setting.
▶ More Benchmarks: Conditional planning problems from IPC non-deterministic track.

References

B. Bonet and H. Geffner. Planning as Heuristic Search. Artif. Intell., 129(1-2):5–33, 2001.

A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, Strong, and Strong Cyclic Planning
via Symbolic Model Checking. Artif. Intell., 147(1–2):35–84, 2003.

M. R. Genesereth, N. Love, and B. Pell. General Game Playing: Overview of the AAAI
Competition. AI Magazine, 26(2):62–72, 2005.

J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search. JAIR, 14:253–302, 2001.

N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1980.

Research Group on the Foundations of Artificial Intelligence, Department of Computer Science, University of Freiburg, Germany Mail: {bercherp,mattmuel}@informatik.uni-freiburg.de


